Weibull回归

发布时间:2015-11-17  栏目:机器学习  评论:0 Comments

先说下Weibull分布:

概率论统计学角度看,Weibull Distribution是连续性的概率分布,其概率密度为:

f(x;\lambda,k) =  \begin{cases}
\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-(x/\lambda)^{k}} & x\geq0\\
0 & x<0\end{cases}

其中,x是随机变量,λ>0是比例参数(scale parameter),k>0是形状参数(shape parameter)。显然,它的累积分布函数是扩展的指数分布函数,而且,Weibull distribution与很多分布都有关系。如,当k=1,它是指数分布;k=2时,是Rayleigh distribution(瑞利分布)。

留下评论

You must be logged in to post a comment.

相册集

pix pix pix pix pix pix

关于自己

杨文龙,微软Principal Engineering Manager, 曾在各家公司担任影像技术资深总监、数据科学团队资深经理、ADAS算法总监、资深深度学习工程师等职位,热爱创新发明,专注于人工智能、深度学习、图像处理、机器学习、算法、自然语言处理及软件等领域,目前发明有国际专利19篇,中国专利28篇。

联系我

个人技术笔记

welonshen@gmail.com

2015 in Shanghai