机器学习优化算法
发布时间:2015-12-05 栏目:机器学习 评论:0 Comments
主要的优化算法有:
- 梯度下降法
- 梯度上升法
- 牛顿法
- 遗传算法
- EM算法
梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较大时,收敛速度尤其慢(几乎不适用);
坐标下降法虽然不用计算目标函数的梯度,但是其收敛速度依然很慢,因此它的适用范围也有局限;
牛顿法是基于目标函数的二阶导数(海森矩阵)的,其收敛速度较快,迭代次数较少,尤其是在最优值附近时,收敛速度是二次的。但牛顿法的问题在于当海森矩阵稠密时,每次迭代的计算量比较大,因为每次都会计算目标函数的海森矩阵的逆,这样一来,当问题规模较大时,不仅计算量大(有时大到不可计算),而且需要的存储空间也多,因此牛顿法在面对海量数据时由于每一步迭代的开销巨大而变得不适用;
拟牛顿法是在牛顿法的基础上引入了海森矩阵的近似矩阵,避免每次迭代都要计算海森矩阵的逆,拟牛顿法的收敛速度介于梯度下降法和牛顿法之间,是超线性的。拟牛顿法的问题也是当问题规模很大时,近似矩阵变得很稠密,在计算和存储上也有很大的开销,因此变得不实用。
另外需要注意的是,牛顿法在每次迭代时不能总是保证海森矩阵是正定的,一旦海森矩阵不是正定的,优化方向就会“跑偏”,从而使得牛顿法失效,也说明了牛顿法的鲁棒性较差。拟牛顿法用海森矩阵的逆矩阵来替代海森矩阵,虽然每次迭代不能保证是最优的优化方向,但是近似矩阵始终是正定的,因此算法总是朝着最优值的方向在搜索。
从上面的描述可以看出,很多优化算法在理论上有很好的结果,并且当优化问题的规模较小时,上面的任何算法都能够很好地解决问题。而在实际工程中,很多算法却失效了。比如说,在实际工程中,很多问题是病态的,这样一来,基于梯度的方法肯定会失效,即便迭代上千上万次也未必收敛到很好的结果;另外,当数据量大的时候,牛顿法和拟牛顿法需要保存矩阵的内存开销和计算矩阵的开销都很大,因此也会变得不适用。
在实际工程中解决大规模优化问题时必然会用到的优化算法:L-BFGS(Limited-memory BFGS)算法。
留下评论
You must be logged in to post a comment.
近期评论
- Pika发表在《莫里斯蠕虫(Morris Worm)》
- Pika发表在《多组学科研分析》
- crisy发表在《最近关于专利的一点感想》
- walter发表在《机器学习基础知识回顾-马尔科夫过程(Markov Process)》
文章归档
- 2024年3月
- 2024年2月
- 2023年12月
- 2023年11月
- 2023年10月
- 2023年9月
- 2023年8月
- 2023年7月
- 2023年6月
- 2023年5月
- 2023年4月
- 2023年3月
- 2023年2月
- 2023年1月
- 2022年12月
- 2022年11月
- 2022年9月
- 2022年8月
- 2022年7月
- 2022年6月
- 2022年5月
- 2022年3月
- 2022年2月
- 2022年1月
- 2021年12月
- 2021年11月
- 2021年10月
- 2021年9月
- 2021年8月
- 2021年7月
- 2021年6月
- 2021年5月
- 2021年4月
- 2021年2月
- 2021年1月
- 2020年12月
- 2020年11月
- 2020年10月
- 2020年8月
- 2020年7月
- 2020年6月
- 2020年5月
- 2020年4月
- 2020年3月
- 2020年2月
- 2019年7月
- 2019年5月
- 2019年3月
- 2019年1月
- 2018年6月
- 2018年5月
- 2018年4月
- 2018年3月
- 2018年2月
- 2017年11月
- 2017年7月
- 2017年6月
- 2017年5月
- 2017年3月
- 2016年12月
- 2016年11月
- 2016年10月
- 2016年9月
- 2016年8月
- 2016年7月
- 2016年6月
- 2016年5月
- 2016年4月
- 2016年3月
- 2016年2月
- 2016年1月
- 2015年12月
- 2015年11月