对偶理论
发布时间:2016-01-15 栏目:机器学习 评论:0 Comments
每一个线性规划问题都伴随有另一个线性规划问题,称为对偶问题。原来的线性规划问题则称为原始线性规划问题,简称原始问题。
对偶问题有许多重要的特征,它的变量能提供关于原始问题最优解的许多重要资料,有助于原始问题的求解和分析。对偶问题与原始问题之间存在着下列关系:
①目标函数对原始问题是极大化,对对偶问题则是极小化。
②原始问题目标函数中的收益系数是对偶问题约束不等式中的右端常数,而原始问题约束不等式中的右端常数则是对偶问题中目标函数的收益系数。
③原始问题和对偶问题的约束不等式的符号方向相反。
④原始问题约束不等式系数矩阵转置后即为对偶问题的约束不等式的系数矩阵。
⑤原始问题的约束方程数对应于对偶问题的变量数,而原始问题的变量数对应于对偶问题的约束方程数。
⑥对偶问题的对偶问题是原始问题,这一性质被称为原始和对偶问题的对称性。
留下评论
You must be logged in to post a comment.
近期评论
- Pika发表在《莫里斯蠕虫(Morris Worm)》
- Pika发表在《多组学科研分析》
- crisy发表在《最近关于专利的一点感想》
- walter发表在《机器学习基础知识回顾-马尔科夫过程(Markov Process)》
文章归档
- 2024年3月
- 2024年2月
- 2023年12月
- 2023年11月
- 2023年10月
- 2023年9月
- 2023年8月
- 2023年7月
- 2023年6月
- 2023年5月
- 2023年4月
- 2023年3月
- 2023年2月
- 2023年1月
- 2022年12月
- 2022年11月
- 2022年9月
- 2022年8月
- 2022年7月
- 2022年6月
- 2022年5月
- 2022年3月
- 2022年2月
- 2022年1月
- 2021年12月
- 2021年11月
- 2021年10月
- 2021年9月
- 2021年8月
- 2021年7月
- 2021年6月
- 2021年5月
- 2021年4月
- 2021年2月
- 2021年1月
- 2020年12月
- 2020年11月
- 2020年10月
- 2020年8月
- 2020年7月
- 2020年6月
- 2020年5月
- 2020年4月
- 2020年3月
- 2020年2月
- 2019年7月
- 2019年5月
- 2019年3月
- 2019年1月
- 2018年6月
- 2018年5月
- 2018年4月
- 2018年3月
- 2018年2月
- 2017年11月
- 2017年7月
- 2017年6月
- 2017年5月
- 2017年3月
- 2016年12月
- 2016年11月
- 2016年10月
- 2016年9月
- 2016年8月
- 2016年7月
- 2016年6月
- 2016年5月
- 2016年4月
- 2016年3月
- 2016年2月
- 2016年1月
- 2015年12月
- 2015年11月