词向量和Word2Vec

发布时间:2016-02-17  栏目:深度学习, 自然语言处理  评论:0 Comments

将词用“词向量”的方式表示可谓是将 Deep Learning 算法引入 NLP 领域的一个核心技术。大多数宣称用了 Deep Learning 的论文,其中往往也用了词向量。

0. 词向量是什么

自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化。
NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量。这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值为 1,这个维度就代表了当前的词。
举个栗子,
“话筒”表示为 [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 …]
“麦克”表示为 [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 …]
每个词都是茫茫 0 海中的一个 1。
这种 One-hot Representation 如果采用稀疏方式存储,会是非常的简洁:也就是给每个词分配一个数字 ID。比如刚才的例子中,话筒记为 3,麦克记为 8(假设从 0 开始记)。如果要编程实现的话,用 Hash 表给每个词分配一个编号就可以了。这么简洁的表示方法配合上最大熵、SVM、CRF 等等算法已经很好地完成了 NLP 领域的各种主流任务。
当然这种表示方法也存在一个重要的问题就是“词汇鸿沟”现象:任意两个词之间都是孤立的。光从这两个向量中看不出两个词是否有关系,哪怕是话筒和麦克这样的同义词也不能幸免于难。

Deep Learning 中一般用到的词向量并不是刚才提到的用 One-hot Representation 表示的那种很长很长的词向量,而是用 Distributed Representation(不知道这个应该怎么翻译,因为还存在一种叫“Distributional Representation”的表示方法,又是另一个不同的概念)表示的一种低维实数向量。这种向量一般长成这个样子:[0.792, −0.177, −0.107, 0.109, −0.542, …]。维度以 50 维和 100 维比较常见。这种向量的表示不是唯一的,后文会提到目前计算出这种向量的主流方法。
(个人认为)Distributed representation 最大的贡献就是让相关或者相似的词,在距离上更接近了。向量的距离可以用最传统的欧氏距离来衡量,也可以用 cos 夹角来衡量。用这种方式表示的向量,“麦克”和“话筒”的距离会远远小于“麦克”和“天气”。可能理想情况下“麦克”和“话筒”的表示应该是完全一样的,但是由于有些人会把英文名“迈克”也写成“麦克”,导致“麦克”一词带上了一些人名的语义,因此不会和“话筒”完全一致。

后文提到的所有“词向量”都是指用 Distributed Representation 表示的词向量。

如果用传统的稀疏表示法表示词,在解决某些任务的时候(比如构建语言模型)会造成维数灾难[Bengio 2003]。使用低维的词向量就没这样的问题。同时从实践上看,高维的特征如果要套用 Deep Learning,其复杂度几乎是难以接受的,因此低维的词向量在这里也饱受追捧。
同时如上一节提到的,相似词的词向量距离相近,这就让基于词向量设计的一些模型自带平滑功能,让模型看起来非常的漂亮。

1. 词向量的训练

要介绍词向量是怎么训练得到的,就不得不提到语言模型。到目前为止我了解到的所有训练方法都是在训练语言模型的同时,顺便得到词向量的
这也比较容易理解,要从一段无标注的自然文本中学习出一些东西,无非就是统计出词频、词的共现、词的搭配之类的信息。而要从自然文本中统计并建立一个语言模型,无疑是要求最为精确的一个任务(也不排除以后有人创造出更好更有用的方法)。既然构建语言模型这一任务要求这么高,其中必然也需要对语言进行更精细的统计和分析,同时也会需要更好的模型,更大的数据来支撑。目前最好的词向量都来自于此,也就不难理解了。
这里介绍的工作均为从大量未标注的普通文本数据中无监督地学习出词向量(语言模型本来就是基于这个想法而来的),可以猜测,如果用上了有标注的语料,训练词向量的方法肯定会更多。不过视目前的语料规模,还是使用未标注语料的方法靠谱一些。
词向量的训练最经典的有 3 个工作,C&W 2008、M&H 2008、Mikolov 2010。当然在说这些工作之前,不得不介绍一下这一系列中 Bengio 的经典之作。

 

 

Word2vec 是 Google 在 2013 年年中开源的一款将词表征为实数值向量的高效工具, 其利用深度学习的思想,可以通过训练,把对文本内容的处理简化为 K 维向量空间中的向量运算,而向量空间上的相似度可以用来表示文本语义上的相似度。Word2vec输出的词向量可以被用来做很多 NLP 相关的工作,比如聚类、找同义词、词性分析等等。如果换个思路, 把词当做特征,那么Word2vec就可以把特征映射到 K 维向量空间,可以为文本数据寻求更加深层次的特征表示

Word2vec 使用的是 Distributed representation 的词向量表示方式。Distributed representation 最早由 Hinton在 1986 年提出[4]。其基本思想是 通过训练将每个词映射成 K 维实数向量(K 一般为模型中的超参数),通过词之间的距离(比如 cosine 相似度、欧氏距离等)来判断它们之间的语义相似度.其采用一个 三层的神经网络 ,输入层-隐层-输出层。有个核心的技术是 根据词频用Huffman编码 ,使得所有词频相似的词隐藏层激活的内容基本一致,出现频率越高的词语,他们激活的隐藏层数目越少,这样有效的降低了计算的复杂度。而Word2vec大受欢迎的一个原因正是其高效性,Mikolov 在论文[2]中指出,一个优化的单机版本一天可训练上千亿词。

这个三层神经网络本身是 对语言模型进行建模 ,但也同时 获得一种单词在向量空间上的表示 ,而这个副作用才是Word2vec的真正目标。

与潜在语义分析(Latent Semantic Index, LSI)、潜在狄立克雷分配(Latent Dirichlet Allocation,LDA)的经典过程相比,Word2vec利用了词的上下文,语义信息更加地丰富。

样例实验

在服务器上部署有Word2Vec系统,可以试试玩一玩

cd /home/liwei/word2vec/trunk

./demo-analogy.sh # Interesting properties of the word vectors (try apple red mango / Paris France Italy)

./demo-phrases.sh # vector representation of larger pieces of text using the word2phrase tool

./demo-phrase-accuracy.sh # measure quality of the word vectors

./demo-classes.sh # Word clustering

./distance GoogleNews-vectors-negative300.bin # Pre-trained word and phrase vectors

./distance freebase-vectors-skipgram1000-en.bin # Pre-trained entity vectors with Freebase naming

详细使用方法见 官网

模型分析

传统的统计语言模型是表示语言基本单位(一般为句子)的概率分布函数,这个概率分布也就是该语言的生成模型。一般语言模型可以使用各个词语条件概率的形式表示:

p(s)=p(w_1^T )=p(w_1,w_2,…,w_T )=∏_t p(w_t |context)

Word2vec采用的是__层次化Log-Bilinear语言模型__,其中一种是CBOW(Continuous Bag-of-Words Model)模型,由上下文预测下一个词为w_t的公式为:

p(w_t |context)=p(w_t |w_(t-k),w_(t-k+1),…,w_(t-1),w_(t+1),…,w_(t+k-1),w_(t+k))

CBOW的计算可以用 层次Softmax算法 ,这种算法结合了Huffman编码,每个词 w 都可以从树的根结点root沿着唯一一条路径被访问到,其路径也就形成了其编码code。假设 n(w, j)为这条路径上的第 j 个结点,且 L(w)为这条路径的长度, j 从 1 开始编码,即 n(w, 1)=root,n(w, L(w)) = w。对于第 j 个结点,层次 Softmax 定义的Label 为 1 – code[j]。

cbow

取一个适当大小的窗口当做语境,输入层读入窗口内的词,将它们的向量(K维,初始随机)加和在一起,形成隐藏层K个节点。输出层是一个巨大的二叉树,叶节点代表语料里所有的词(语料含有V个独立的词,则二叉树有|V|个叶节点)。而这整颗二叉树构建的算法就是Huffman树。这样,对于叶节点的每一个词,就会有一个全局唯一的编码,形如”010011″,不妨记左子树为1,右子树为0。接下来,隐层的每一个节点都会跟二叉树的内节点有连边,于是对于二叉树的每一个内节点都会有K条连边,每条边上也会有权值。

word2vec层次softmax网络示意图

对于语料库中的某个词w_t,对应着二叉树的某个叶子节点,因此它必然有一个二进制编码,如”010011″。在训练阶段,当给定上下文,要预测后面的词w_t的时候,我们就从二叉树的根节点开始遍历,这里的目标就是预测这个词的二进制编号的每一位。即对于给定的上下文,我们的目标是使得预测词的二进制编码概率最大。形象地说,我们希望在根节点,词向量和与根节点相连经过logistic计算得到bit=1的概率尽量接近0,在第二层,希望其bit=1的概率尽量接近1,这么一直下去,我们把一路上计算得到的概率相乘,即得到目标词w_t在当前网络下的概率P(w_t),那么对于当前这个sample的残差就是1-P(w_t),于是就可以使用梯度下降法训练这个网络得到所有的参数值了。显而易见,按照目标词的二进制编码计算到最后的概率值就是归一化的。

Hierarchical Softmax用Huffman编码构造二叉树,其实借助了分类问题中,使用一连串二分类近似多分类的思想。例如我们是把所有的词都作为输出,那么“桔子”、“汽车”都是混在一起。给定w_t的上下文,先让模型判断w_t是不是名词,再判断是不是食物名,再判断是不是水果,再判断是不是“桔子”。

但是在训练过程中,模型会赋予这些抽象的中间结点一个合适的向量,这个向量代表了它对应的所有子结点。因为真正的单词公用了这些抽象结点的向量,所以Hierarchical Softmax方法和原始问题并不是等价的,但是这种近似并不会显著带来性能上的损失同时又使得模型的求解规模显著上升。

没有使用这种二叉树,而是直接从隐层直接计算每一个输出的概率——即传统的Softmax,就需要对|V|中的每一个词都算一遍,这个过程时间复杂度是O(|V|)的。而使用了二叉树(如Word2vec中的Huffman树),其时间复杂度就降到了O(log2(|V|)),速度大大地加快了。

参考

官方资料

Word2Vec Homepage

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013

 

其他参考:http://www.tuicool.com/articles/fmuyamf

留下评论

You must be logged in to post a comment.

相册集

pix pix pix pix pix pix

关于自己

杨文龙,微软Principal Engineering Manager, 曾在各家公司担任影像技术资深总监、数据科学团队资深经理、ADAS算法总监、资深深度学习工程师等职位,热爱创新发明,专注于人工智能、深度学习、图像处理、机器学习、算法、自然语言处理及软件等领域,目前发明有国际专利19篇,中国专利28篇。

联系我

个人技术笔记

welonshen@gmail.com

2015 in Shanghai