Thought Vector

发布时间:2016-03-10  栏目:人工智能, 深度学习, 自然语言处理  评论:0 Comments

Thought Vector可以应用在人工智能、自然语言理解等领域。

 

A thought vector is like a word vector, which is typically a vector of 300-500 numbers that represent a word. A word vector represents a word’s meaning as it relates to other words (its context) with a single column of numbers.

That is, the word is embedded in a vector space using a shallow neural network like word2vec, which learns to generate the word’s context through repeated guesses.

A thought vector, therefore, is a vectorized thought, and the vector represents one thought’s relations to others. A thought vector is trained to generate a thought’s context. Just as a words are linked by grammar (a sentence is just a path drawn across words), so thoughts are linked by a chain of reasoning, a logical path of sorts.

So training an algorithm to represent any thought in its relation to others might be called the artificial construction of common sense. Given one thought, a neural network might predict the thoughts that are likely to follow, much like recurrent neural networks do with characters and words. Conversation as search.

 

More details at: http://deeplearning4j.org/thoughtvectors

 

留下评论

You must be logged in to post a comment.

相册集

pix pix pix pix pix pix

关于自己

杨文龙,微软Principal Engineering Manager, 曾在各家公司担任影像技术资深总监、数据科学团队资深经理、ADAS算法总监、资深深度学习工程师等职位,热爱创新发明,专注于人工智能、深度学习、图像处理、机器学习、算法、自然语言处理及软件等领域,目前发明有国际专利19篇,中国专利28篇。

联系我

个人技术笔记

welonshen@gmail.com

2015 in Shanghai