【转】超限学习机(Extreme Learning Machine)

发布时间:2016-10-07  栏目:人工智能, 机器学习, 深度学习  评论:0 Comments

1. ELM 是什么

ELM的个人理解: 单隐层的前馈人工神经网络,特别之处在于训练权值的算法: 在单隐层的前馈神经网络中,输入层到隐藏层的权值根据某种分布随机赋予,当我们有了输入层到隐藏层的权值之后,可以根据最小二乘法得到隐藏层到输出层的权值,这也就是ELM的训练模型过程。

与BP算法不同,BP算法(后向传播算法),输入层到隐藏层的权值,和隐藏层到输出层的权值全部需要迭代求解(梯度下降法)

 

 

用一张老图来说明,也就是说上图中的Wi1,Wi2,Wi3 在超限学习机中,是随机的,固定的,不需要迭代求解的。我们的目标只需要求解从隐藏层到输出层的权值。毫无疑问,相对于BP算法,训练速度大大提高了。

 

 

2. ELM 的训练过程

 

在上述公式中,wi 表示输入层到隐藏层的权值, bi表示系统偏置(bias),ß   则是我们的目标:隐藏层到输出层的权值,N 表示训练集的大小,oj 表示分类结果。为了无限逼近训练数据的真实结果,我们希望分类结果与真实结果t一致,那么也就是所以上式可以表示为 (懒了,不想用公式编辑器,TAT)

用矩阵表示,则 

其中N 表示训练集的大小,N~ 表示隐藏层结点的数量,g(x)表示active function(激活函数?),g(x)要求无限可微。

怎么求解这个方程就成为了ELM的训练过程,恩。

求解方法:1. 传统的梯度下降法 (不说了,就是BP算法)

2.  LS 最小二乘法方法

目标:最小化误差

根据 Hß = T, 如果H 是一个方阵的话,ß可以直接求解为H-1T。

如果H不是, 最小误差的ß 为 ,其中H+ 为H的Moore-Penrose 广义逆。

留下评论

You must be logged in to post a comment.

相册集

pix pix pix pix pix pix

关于自己

杨文龙,微软Principal Engineering Manager, 曾在各家公司担任影像技术资深总监、数据科学团队资深经理、ADAS算法总监、资深深度学习工程师等职位,热爱创新发明,专注于人工智能、深度学习、图像处理、机器学习、算法、自然语言处理及软件等领域,目前发明有国际专利19篇,中国专利28篇。

联系我

个人技术笔记

welonshen@gmail.com

2015 in Shanghai