Hebbian theory

发布时间:2018-02-26  栏目:人工智能  评论:0 Comments

赫布理论英语:Hebbian theory)描述了突触可塑性的基本原理,即突触前神经元向突触后神经元的持续重复的刺激可以导致突触传递效能的增加。这一理论由唐纳德·赫布于1949年提出,又被称为赫布定律(Hebb’s rule)、赫布假说(Hebb’s postulate)、细胞结集理论(cell assembly theory)等。他如此表述这一理论:


我们可以假定,反射活动的持续与重复会导致神经元稳定性的持久性提升……当神经元A轴突与神经元B很近并参与了对B的重复持续的兴奋时,这两个神经元或其中一个便会发生某些生长过程或代谢变化,致使A作为能使B兴奋的细胞之一,它的效能增强了。这一理论经常会被总结为“连在一起的神经元一起激活”(Cells that fire together, wire together)。这可以用于解释“联合学习”(associative learning),在这种学习中通过对神经元的刺激使得神经元间的突触强度增加。这样的学习方法被称为赫布型学习(Hebbian learning)。

Another formulaic description is:

{\displaystyle w_{ij}={\frac {1}{p}}\sum _{k=1}^{p}x_{i}^{k}x_{j}^{k},\,}

留下评论

You must be logged in to post a comment.

相册集

pix pix pix pix pix pix

关于自己

杨文龙,微软Principal Engineering Manager, 曾在各家公司担任影像技术资深总监、数据科学团队资深经理、ADAS算法总监、资深深度学习工程师等职位,热爱创新发明,专注于人工智能、深度学习、图像处理、机器学习、算法、自然语言处理及软件等领域,目前发明有国际专利19篇,中国专利28篇。

联系我

个人技术笔记

welonshen@gmail.com

2015 in Shanghai