深度学习可解释性初探

发布时间:2021-07-27  栏目:人工智能, 图像处理, 深度学习  评论:0 Comments

目前两种方法:

  • – LRP(Layer-Wise Relevance Propagation)
    LRP是从模型输出开始,反向传播,直到模型输入开始为止,对由输入特征导致其预测结果的解释,文章中主要探究图片像素点与最终结果的相关性。
  • – 深度taylor分解深度泰勒分解是一种解释神经网络对个体预测的方法。它产生的结果是神经网络所表达的函数在输入变量上的分解。该方法可用作深度学习模型可视化工具,或作为复杂的分析方法的一部分。众所周知,当前的深度学习分类器只提供对图像的预测,但没有提供与其相关的解释。一种可能的得到解释的方式是:确定哪些输入变量(这里是像素)对图像分类的结果有多大的贡献,特别是图像中的哪些像素与预测结果直接相关,然后将对应的贡献分配到像素热图上,再对热图可视化就可以得到一种解释。

 

以上两种方法都只是将最终结果反馈到像素点,如何将结果的变化反馈到某个层的某个参数?

 

参考:

https://blog.csdn.net/moxibingdao/article/details/106667002

https://blog.csdn.net/ChangHao888/article/details/109320053

留下评论

You must be logged in to post a comment.

相册集

pix pix pix pix pix pix

关于自己

杨文龙,微软Principal Engineering Manager, 曾在各家公司担任影像技术资深总监、数据科学团队资深经理、ADAS算法总监、资深深度学习工程师等职位,热爱创新发明,专注于人工智能、深度学习、图像处理、机器学习、算法、自然语言处理及软件等领域,目前发明有国际专利19篇,中国专利28篇。

联系我

个人技术笔记

welonshen@gmail.com

2015 in Shanghai