EfficientNet和EfficientDet

发布时间:2021-08-18  栏目:人工智能, 图像处理, 机器视觉, 深度学习  评论:0 Comments

卷积神经网络(ConvNets)通常是在固定的资源预算下发展起来的,如果有更多的资源可用的话,则会扩大规模以获得更好的精度,比如可以提高网络深度(depth)网络宽度(width)输入图像分辨率 (resolution)大小。但是通过人工去调整 depth, width, resolution 的放大或缩小的很困难的,在计算量受限时有放大哪个缩小哪个,这些都是很难去确定的,换句话说,这样的组合空间太大,人力无法穷举。基于上述背景,该论文提出了一种新的模型缩放方法,它使用一个简单而高效的复合系数来从depth, width, resolution 三个维度放大网络,不会像传统的方法那样任意缩放网络的维度,基于神经结构搜索技术可以获得最优的一组参数(复合系数)。

 

留下评论

You must be logged in to post a comment.

相册集

pix pix pix pix pix pix

关于自己

杨文龙,微软Principal Engineering Manager, 曾在各家公司担任影像技术资深总监、数据科学团队资深经理、ADAS算法总监、资深深度学习工程师等职位,热爱创新发明,专注于人工智能、深度学习、图像处理、机器学习、算法、自然语言处理及软件等领域,目前发明有国际专利19篇,中国专利28篇。

联系我

个人技术笔记

welonshen@gmail.com

2015 in Shanghai